Convergence and superconvergence of a fully-discrete scheme for multi-term time fractional diffusion equations

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

solution of time fractional diffusion equations using a semi-discrete scheme and collocation method based on chebyshev polynomials

in this paper, a new numerical method for solving time-fractional diffusion equations is introduced. for this purpose, finite difference scheme for discretization in time and chebyshev collocation method is applied. also, to simplify application of the method, the matrix form of the suggested method is obtained. illustrative examples show that the proposed method is very efficient and accurate.

متن کامل

Two Fully Discrete Schemes for Fractional Diffusion and Diffusion-Wave Equations with Nonsmooth Data

We consider initial/boundary value problems for the subdiffusion and diffusionwave equations involving a Caputo fractional derivative in time. We develop two fully discrete schemes based on the piecewise linear Galerkin finite element method in space and convolution quadrature in time with the generating function given by the backward Euler method/second-order backward difference method, and es...

متن کامل

A numerical scheme for space-time fractional advection-dispersion equation

In this paper, we develop a numerical resolution of the space-time fractional advection-dispersion equation. We utilize spectral-collocation method combining with a product integration technique in order to discretize the terms involving spatial fractional order derivatives that leads to a simple evaluation of the related terms. By using Bernstein polynomial basis, the problem is transformed in...

متن کامل

Superconvergence of a Discontinuous Galerkin Method for Fractional Diffusion and Wave Equations

We consider an initial-boundary value problem for ∂tu−∂ t ∇2u = f(t), that is, for a fractional diffusion (−1 < α < 0) or wave (0 < α < 1) equation. A numerical solution is found by applying a piecewise-linear, discontinuous Galerkin (DG) method in time combined with a piecewiselinear, conforming finite element method in space. The time mesh is graded appropriately near t = 0, but the spatial m...

متن کامل

A semi-discrete finite element method for a class of time-fractional diffusion equations.

As fractional diffusion equations can describe the early breakthrough and the heavy-tail decay features observed in anomalous transport of contaminants in groundwater and porous soil, they have been commonly used in the related mathematical descriptions. These models usually involve long-time-range computation, which is a critical obstacle for their application; improvement of computational eff...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computers & Mathematics with Applications

سال: 2017

ISSN: 0898-1221

DOI: 10.1016/j.camwa.2016.05.005